Sur les sous-espaces de $l_p \hat{\hat{\otimes}} l_q$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zéro-cycles de degré un sur les espaces homogènes

We explain how to build homogeneous spaces of a connected linear algebraic group, having zero-cycles of degree one but no rational point, even on a smooth compactification. Thus, we give a negative answer to a recent question asked by Burt Totaro. Parimala ([Pa]) has independently produced such spaces over fields of the type k((t)) (for k a suitable p-adic field), which are projective varieties...

متن کامل

Sur les sous-groupes nilpotents du groupe de Cremona

We describe the nilpotent subgroups of the group Bir(P(C)) of birational transformations of the complex projective plane. Let N be a nilpotent subgroup of class k > 1; then either each element of N has finite order, or N is virtually metabelian.

متن کامل

Sur Les Applications De Lattès De P

Let f be a polynomial endomorphism of degree d ≥ 2 of C k (k ≥ 2) which extends to a holomorphic endomorphism of P k. Assume that the maximal order Julia set of f is laminated by real hypersurfaces in some open set. We show that f is homogenous and is a polynomial lift of a Lattès endomorphism of P k−1 .

متن کامل

Itération D’applications Rationnelles Dans Les Espaces De Matrices

The iteration of rational maps is well understood in dimension 1 but less so in higher dimensions. We study some maps on spaces of matrices which present a weak complexity with respect to the ring structure. First, we give some properties of certain rational maps; the simplest example is the rational map which sends the matrix M onto M2 for which we exhibit some dynamical properties. Finally, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1980

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-11887