Sur les sous-espaces de $l_p \hat{\hat{\otimes}} l_q$
نویسندگان
چکیده
منابع مشابه
Zéro-cycles de degré un sur les espaces homogènes
We explain how to build homogeneous spaces of a connected linear algebraic group, having zero-cycles of degree one but no rational point, even on a smooth compactification. Thus, we give a negative answer to a recent question asked by Burt Totaro. Parimala ([Pa]) has independently produced such spaces over fields of the type k((t)) (for k a suitable p-adic field), which are projective varieties...
متن کاملSur les sous-groupes nilpotents du groupe de Cremona
We describe the nilpotent subgroups of the group Bir(P(C)) of birational transformations of the complex projective plane. Let N be a nilpotent subgroup of class k > 1; then either each element of N has finite order, or N is virtually metabelian.
متن کاملSur Les Applications De Lattès De P
Let f be a polynomial endomorphism of degree d ≥ 2 of C k (k ≥ 2) which extends to a holomorphic endomorphism of P k. Assume that the maximal order Julia set of f is laminated by real hypersurfaces in some open set. We show that f is homogenous and is a polynomial lift of a Lattès endomorphism of P k−1 .
متن کاملItération D’applications Rationnelles Dans Les Espaces De Matrices
The iteration of rational maps is well understood in dimension 1 but less so in higher dimensions. We study some maps on spaces of matrices which present a weak complexity with respect to the ring structure. First, we give some properties of certain rational maps; the simplest example is the rational map which sends the matrix M onto M2 for which we exhibit some dynamical properties. Finally, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1980
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-11887